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INTRODUCTION

Crew and aircraft losses attributed to loss of control at high angles of attack con-
tinue to occur and to be of concern to both the Navy and Air Force, and continue to be
identified as an area in which further research is needed. The need exists not only to
reduce such losses of current aircraft but to minimize those of future aircraft now in
development.

In 1979, the Navy appointed an independent Executive Review Group to assess the
problem relative to the F-14. Among its conclusions the group identified causal factors
associated with airframe aerodynamics, control system mechanization, engine asym-
metries, piloting technique, and physiological factors. The group also recommended
high fidelity simulation as a low risk means of addressing this problem.

Realizing the potential of the NADC centrifuge (dynamic flight simulator) for this
purpose, the Aircraft and Crew Systems Technology Directorate has begun a program
to substantially improve its simulation capability to meet the requirements of a high
fidelity simulator capable of modeling a variety of aircraft. This capability will encom-
pass most conventional simulation techniques, and it will have the capability and flexi-
bility to model aircraft dynamics in all flight conditions including fully developed spins.

As part of that program the Flight Dynamics Branch (Code 6053) was asked to
provide equations of motion and F-14 aerodynamic and control system data adequate
to the task. This report is intended to document those recommendations and to serve
as a basis for subsequent simulation software revisions. Since the intent is to use the
simulation as a research tool, considerable emphasis is given to flexibility.

It is considered beyond the scope of this document to implement, in the form of
programs and subroutines, the recommendations presented. In the interest of com-
pleteness however, certain programming approaches are suggested. While efforts are
made to make those suggestions readily programmable, it is realized that the sug-
gested methods may not necessarily be the most computationally efficient. While some
changes may be required, it is felt that implementation of all major features can be
preserved in the final software implementation.

41
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EQUATIONS OF MOTION

NONLINEARIZED DYNAMIC EQUATIONS

It is the need for the proposed simulation to represent the extreme high angle of
attack flight regime which distinguishes it from other simulations. Therefore the
requirements of this feature are the driving factors in settling on the equations of
motion. Several considerations peculiar to this type of simulation may be listed as:

1. Nonlinearity of data

2. Uncertainty about form of data

*, 3. Importance of various asymmetries

4. Large angle motions

Just how each of these factors impacts the form of the equations of motion will be
pointed out in this section.

The aerodynamic force and moment data typically changes very rapidly and often
unexpectedly with changes in the orientation of the free stream velocity vector. Fur-
thermore, there are no guarantees that trim is possible at all flight conditions of
interest.

The aircraft may undergo such extremely violent excursions that any state of
equilibrium may be simply a very brief transient state. Under these conditions the
conventional stability derivatives have little meaning. That is, the concept of air-
craft motions consisting of small perturbations from an equilibrium condition is not
applicable. For this reason the usual linearization of the rigid body dynamic equations,
whether for analysis or simulation, is inappropriate. The full nonlinear rigid body
dynamic equations must be used.

These equations arise from the six degree of freedom equations of Newtonian
dynamics.

-I d -- - = d
F=-mV T-I o

dt dt n

which define force and moment as the first derivative of linear and angular momentum,
respectively. These equations are defined for inertial (nonaccelerating, nonrotating)
reference frames.

2
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If we wish to write the force and moment equations in a reference frame that may
be rotating, we must remember that differentiation of any vector V in such a system
requires an additional term.

.L
dV ""- -

dtV+ co-ord

to represent the inertial quantity.

The assumption that mass and inertia are approximately constant for the time
required to pass through the equations of motion once yields.

F=ma* T=In +(12XIf2)n n

Making this assumption essentially selects body axes as the reference frame for all
forces and moments because it is the only reference frame in which inertias are con-
stant with time. To avoid unnecessary axes conversions, it will be assumed that all
aerodynamic data will be in body axes.

If the aircraft motion is considered to be a combination of translation of the center
of mass and rotation about the center of mass then all forces may be considered to act
through, all mass may be considered concentrated in, and the origin of the body axis
system may be attached to, the center of gravity.

By, differentiating the expression for position in body axis twice, using the pre-
scribed differentiation formula, we may arrive at the standard dynamic equation for
inertial acceleration.

V=dR~ + fx
dt

dV :A -A ~.~~-a --d =(R+ fxR + IxR)+ ~x R + lxf~xR

-A -A

V f2xV

Since the center of mass is always at the origin, R = 0, and body axis velocity is true
inertial velocity, its components are defined as

VT= ui+vj+wk

But body axis acceleration is related to inertial acceleration by
.A ", . .h
a = V + (fx V).

* a is defined as inertial acceleration.

3
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Similar arguments apply to show that the body axis components of angular velocity are
the components of the true inertial rate.

I -. .A
f=pi +qj + rk.

Angular acceleration in body axis is also the inertial angular acceleration since the
coriolus terms (flx f2) are zero by the properties of the vector cross product.

aO= i + 4j + ik.

Expanding the linear acceleration equation gives the more common form

ua +(rv-qw)
x

v=a +(pw-ru)

v=a +(qu-pv)z

Because accelerations can be easily integrated to obtain rates and positions, it is
most useful to write the force and moment equations in terms of accelerations.

It is still a matter of choice as to which forces and moments are included in the
equations. The significant forces may be categorized as aerodynamic, thrust, and
gravitational, making the rectilinear equations

ax = g/W{QSZ C xi +coseET i } - g sina

ay =gW{QSEcyj+g cos o sinO

az g/W{QSE C +sine ET. }+ coso cos0.

Similarly the moment equation
-A .1- 1 -=1.=

IT = I n R + (fZx I nf )

may be written

f= In T- (Slx Ina)

or
' p ~i=d1 Mx +d 1 2 My +d 1 3 M I

=dM +d '1 + d M112 x 2 y 23 z

12 M x +d2 My +d 3 M z

d13 11x +d23 Lv, 3 NIz

4
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Where Mx, MY MZ, include aerodynamic moments, thrust moments, corrections for
center of gravity shift, as well as inertia coupling moments, and engine gyroscopic
moments.

I the applied force components are defined as:

F x= Qs ZC .i+cose ZT.

Fy = sZCyi

Fz Qs 1:C *i+sine IT

the form of the moment terms are kept more manageable.

M x= QSb IC 1 .+ (I y- I zqr+p (qI z- rI )Y

+ F y A c z xz xy

+q sine I iIee wT.

+ (r rI~ yz+1 i 1

+F z(AX cg) x(zcg

r cQseZC I.ew(i - p ine I -p1

yz m i + ( x xyq+ p yz lx

+-(cose X + copsie 1 i

+~~ ei ,yg Fy(,o o e 7-ei we

ni -Ipq~r~1 -5
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MASS AND INERTIA ASYMMETRIES

An important factor in the choice of these equations is the ability to account for
mass and engine asymmetries.

To this end, the cg. may be shifted in any of three directions from its nominal
location (A xc g, AYcg, Azcg), no products of inertia are assumed zero, and each
thrust and engine moment arm is accounted for separately.

In order to account for the weight and inertia contribution of individual aircraft or
store components, these are expressed as the summation of terms some of which may
be functions of variables such as switch positions, wing sweep, or time.

I=ZyI. I -
x xi xy xzi

I =ZI. I =Z1

y yi yz yzi

I =zI. I =ZI
z zi xz xzi

1

The numbers, di, represent the entries of the inverse of the inertia matrix

-1

-d 1 d 12 d 3 I y -IxI d12 d2 d23 y -I z
d 23 d3 J L -IXZ -yz I

Since the product of the inertia matrix and its inverse are the identity matrix.
-1

I I =I
nfn

We can write

.1I. = [i
n d 120

d 13-J 0

6
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and find each entry by Cramer Is rule which for d1 gives

xy xz
1,0 -1

det I ny yz

0 -1 I
yz z

In doing so we obtain the relations

det I=1I1 -21 1 1 -(II +11 2+1 12
n yz xyxz yz x yz y xz z xy

2
d, (I yI - I Y )/det I

2
d 2-1x I xz)/det In

d 12 (1IzI -zI xyI)/detI

d =1 (11 IZ +1Ix I y)/det I

d (I I +1 1 )/det I

23 xyxz- yzx n

LARGE ANGLE MOTION CONSIDERATIONS

Since the simulation may be required to travel through very large angular motions
it is essential to describe both wind vector and earth axis orientation so that all pos-
sible orientations are algebraically definable and continuous.

Velocity vector orientation is definable any time total velocity is not zero. Its
magnitude is given by:

II= iF27W2w

if V T 0, sideslip is defined as

TT

7
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which is continuous over the range -90°- ( < 90. Angle of atack is definable any
time the velocity vector has a projection in the XZ body axis plane. That is if

2 2
U +w 240.

The normal definition for angle of attack however,

Han-1 w
u

is not defined at a = ±900 and further can not distinguish between the range 00 a 900
and the range -90"<a<1800, nor the range -900 <a0 and the range 90"<c-180 °.

An alternate expression valid over the entire range -180o < a 1800 (not inclusive) is

2= tan'
u+ u2 +w

For quadrants I and II this expression follows directly from the geometry below.

QUADRANTS I & II QUADRANTS III & Iv

II V a / 2 I V

For quadrants I and IV the geometry says

tan a/2 = -u + +w
w

which can be altered to the desired form by multiplying by

u +W
" -8

I....
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provided u + Vu + w2  0, 180°. Conversely if

U = -180.

4
Differentiating the expressions defining angle of attack and sideslip and substituting

the relations on page 4 between apparent body axis and inertial accelerations gives
expressions for rates,

a u - a w - v (pu +rw)
= z x +q

2 2
(u +w

2 2 2
a (u +w)-v (axu+azw) +VT (pw - ru)

_2JT

in terms of readily available quantities.

Similar problems occur in representing earth axis orientation with standard Euler

angles which are obtained by integrating the Euler angle rates

=p+(qsin 0+rcos )tan

= (q sin 0 + r cos 0 )/cos 6

=qcoso -rsin0.

At 0 = ±90° the expressions for and 4 become undefined and their values ambiguous.

One possible way of avoiding this problem is by use of quaternions which are both
continuous and unambiguous. Since this method was previously used for the ACM
simulation no elaboration is necessary here.

Should use of an alternate method become necessary, one is suggested by the fact
that if the Euler rates are known, no such problem exists.

p = 9- sin o

q = Ocos0 + 4cos 0 sin k

r = 4 coso cos - sino

This directional quality suggests that a set of inverse Euler angles be used to deter-
mine the orientation of earth axes relative to body axes. The inverse Euler angles

9
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are defined in the same manner as their conventional counterparts, except that the
sequence of rotations begins at body axes and ends with earth axes rather than vice
versa.

,= r-1

- =qcos - p sin

(-I = p Cos 4'- + q s in 4,_i ) Co s 0_i- r sin 0_i

This equation is not singular for any orientation. Furthermore, the matrix which maps
to earth axes using inverse Euler angles is identical in form to that which maps earth
axes to body axes using the standard set.

Cos 4 Cos 8 sin 0 cos e -sin e

(Cos~ (ssn inin 4, sineasi

-cos 0 sin 4/ +cos4, cos /

(cos~Co -cs4 Cosn

+sinP sin 0 -cosk sin o /
Since each transformation is between orthogonal coordinate systems, the inverse

of the above matrix is its transpose. Because the above transformation and the iden-
tical transformation with the inverse Euler angles substituted are inverse operations,
the two sets of angles may be related by equating forms across the diagonal of the
above matrix.

0 = - sin-  cos4,- sin 0- cos - + sin 0- sin 0-

{Cos 4, CosG
= cos cosC 0

= 1 cos -
1 cCos 1

= Cos Cos

To express the inverse angles in terms of the standard angles simply reverse
their positions in this form.

10
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While the expressions for the standard Euler angles is still undefined at 0 = 900,
the inverse angles do not experience this problem.

Rates and positions may be calculated by numerical integration. An easy method
of implementation is to model each integrator as an element of a linear system using

the digital representations to be described later. Those variables needing integration
are;

U =fiidt p =f dt

v ifdt q =fjidt

w =f ivdt r = f dt

If alternate Euler angles are used to represent earth axis orientation we have also

.- i = f -i dt

L f0- dt0-1 1 d

01 f dt
Standard Euler angles may be determined by direct conversion. Translational

rates may be converted to earth axes using the matrix on page 12, and then integrated
to keep track of position and altitude

X = f u dt

y fv dt

h = fw dtIJ e

Using a table look-up to determine Q/m 2 and speed of sound, a, from atmospheric
data allows the calculation of

M = v__Ja

Q = (Q/M ) M2
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DATA FORM AND USE

An important fact concerning extreme high angle of attack and spin simulation is
that the aerodynamic phenomena which generate the forces and moments are not easily
predictable or, in some cases, well understood. The significant phenomena may change
radically from one aircraft to another, or from one angle of attack or rotation rate
range to another. In addition, what phenomena are known to exist on any given air-
craft is something which changes with time as new test techniques are developed or as
new information is extracted from flight test data.

By providing data storage and equations of motion, we are faced with a great deal
of uncertainty about exactly which aerodynamic coefficients are significant, to what
extent they may be linear or nonlinear, and even of what variables they may be func-
tions. Essentially what is needed is a programming scheme flexible enough to accept
a wide variety of data forms without reprogramming.

A nonlinearized form of the equations of motion have been chosen so that in the
absence of linearizing assumptions, either linear or nonlinear data may be used. The
aerodynamic data has further been resolved into body axis components and expressed
in standard force and moment coefficient form. Each component is expressed simply
as a term in a summation. This implies the generalization of data look up process
which frees the aerodynamic and thrust data of any specified form.

Under such a programming approach each aerodynamic, thrust, and some weight
and inertia terms, would be represented by a data table of up to three dimensions.
The table would contain all ordinates and their corresponding data points, but it
would also contain a number of control integers. These integers would specify a
number of operations to be performed on the result of the raw table look up function.

Such integers would perform the following functions:

1. Specify the number of ordinates in the table

2. Identify each ordir - of the table

3. Identify the equation in which the table represents a term

4. Specify any variables by which the result of the table look up must be multi-
plied before adding to the equation of motion (for linear data).

To accomplish this it will probably be necessary to establish a coding system whereby
any variable (such as accelerations, rates, positions, load factors, mach number
a~titude, dynamic pressure, etc.) or equation is assigned an integer, which identifies
it to the program and allows it to be specified by entering its number in the input data

12
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set. This coding will also be necessary for specification of input and output variables
for the control system. It may even be possible, and probably preferable, to use
Alpha numeric character sets rather than numerical codes.

It is possible that any data table may be applicable only over a specified range of a
particular variable. For instance, a given aerodynamic coefficient may be highly
linear over a given range of ordinates and nonlinear outside that range. Therefore, it
is necessary to be able to specify a number of variables and limiting values outside of
which the table is bypassed and "cut off". Such cut-off variables may not always be
restricted to those associated with the table ordinates.

When these features are imnlemented, it will be possible to add or delete virtually
any linear or nonlinear data. T.e capability exists to completely reprogram the form
of the aerodynamic data simply by changing data tables. This capability is essential
to the flexibility required to maintain the usefulness of the simulation software in an
uncertain and rapidly changing technology area.

EQUATION SUMMARY

Linear Degrees of Freedom:

a =g (F x/W- sine)

a =g (F /W + sin 0 cos 0)Y Y

a =g(F /W +cos 0coso)z z

Rotational Degrees of Freedom:

p~d M -idc M +d MI x 12 y 13 z

d=ci M +d M +d M

13 x 23 y 3 z

Body Axis Force:

F =QS C . +cose ZT.x xi 1

F =QSZC .Y yi

F =QSZC . + sine MT.

13
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Body Axis Moment:

M x= QSb XC9 + sinfl:vZ .T.

2 2
+(1 -1 )qr + p(qI -rI + +(q - r )I

y z xz xy yz

My = S rcmi 41,Ti Ti

+ F z (,lxc,) -Fx (Azcg) -(r cose + p s in e) I'ewei

2 2
+ (I-Ix)pr + q(r I Y- pl z) + (r - p I Iz

M zQSb Z C . + cos e E T.i

+F(YM 7  F( g)qd o eI ei

2 2
+ (I-1y) pq +r (pl y-qI X ) +(p - q )I

Weight and Inertia:

Ix =zlxi Iy = Zyi Iz ZIzi

IX = x Y YIz xz!

22
de =(11I - I I -(IeI 1 1

d 2= (I I -I xz2)/det I
1 yz ya

d 3= (I xI I Xy2)/det I

14
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d12 (1yz Ixz +Ixy Iz )dtIn

d13 (1xyIzy +Ixz Iy /dtIn

d f 2 3  (1Ix I xz+Iy I 1/det In

Velocity Vector Orientation:

2 2 2
V = u +V +W

T

IF VT =01 0 LAST

IF V T#0

0= sin

2 2LAT
IF u + 0  AST' LAT 0 LAST

IF u= - a =180*

IF u _42+

a= 2 tan

a zu - a xw - v (pu+rw)

(U +fw

y(U2 +w)-v(axu +a zW) +V (pwv-ru)

15
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Earth Axis Orientations by Quaternions

Body axis rate derivatives

Ci a x+ (rv -qw)

va y+ (pw -ru)

wa z+ (qu -pv)

Obtain by integration

X,Y, h

Atmosphere dependent quantities

M -Vr,/a

Q (Q/M2)M2

16
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CONTROL SYSTEM DIGITIZATION

APPROACH

Previous simulations on the NAVAIRDEVCEN centrifuge employed an analog
representation of the aircraft flight control system. For reasons of run efficiency,
reliability, and repeatability, and for the capability to rapidly change control systems
as well as to transfer the simulation to other Navy simulation facilities, a digital
representation of the aircraft flight control systems is required. The following
development outlines a flexible approach for representing such systems on
NAVAIRDEVCEN simulation facilities.

Inputs to the control system may be considered to be any of a number of control
deflections from various cockpit devices and any of a number of parameters which
define the flight condition of the aircraft. Outputs may be surface deflections, thrust
level, or stick force feedback terms. The output terms may be used either for
determining forces and moments acting on the aircraft or for the operation of cockpit
hardware.

All elements of the system may be classified as either linear or nonlinear. A
linear element may be defined for this purpose as one described by a transfer function.

Nonlinear elements are those described by nonlinear functions in which time is not
an explicit variable, i. e., nonlinear differential equations are not considered. In
general, any control system may be viewed as one or more networks of linear ele-
ments, separated by one or more nonlinear elements and joined together in a par-
ticular element structure.

A general control system may have any number of arbitrarily connected elements.
Therefore, it would be extremely difficult to devise a completely general method to
model all possible control systems.

It is possible to represent networks of linear elements in a very compact and

general fashion using state space notation, and to classify most nonlinear elements
as one of a few types. The nonlinear element structure is almost always peculiar
to a particular control system and, if altered, will unavoidably require some degree
of reprogramming. By altering numerical values which are obtained from input data
tables, significant changes may be made without reprogramming.

In addition, many different nonlinear element structures may be stored as sub-
routines, which may be conditionally called, allowing rapid change of control systems.

If (ICS. EQ. 1) CALL CONSYS 1 ............. etc.

17
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The control system may then be conveniently partitioned into successive nonlinear
and linear stages.

The boundaries of a nonlinear stage are established by encountering either a
linear element, or the output of a linear element not contained in any previous linear
stage, while proceeding in the direction of signal flow.

It is necessary to preserve several variables used internally to the control system
to link linear and nonlinear stages. The control system will not generally be expressible
as a single linear system. This type of reduction is usually performed assuming all
nonlinear test functions are positive.

,INTERNAL 0
I VARIABLES U

N p
P TU U

T1 UT FIRST FIRSTT

V NONLINEAR LINEAR
A STAGE STAGE A

R R
I IA A
B B
L LE
E E

S

Most nonlinear elements may be categorized as one of three types.

Schedule - Any nonlinear function requiring data interpolation
or data look up.

Computational Nonlinearity - A nonlinear function expressible algebraically.

Switching Nonlinearity - Any logical test including on-off and limiting.

A schedule may represent an element such as a nonlinear gearing, or it may
represent programmed configuration changes such as wing sweep, or it may be used

to actively change control system parameters: limits, transfer function gains, or
coefficients of computational nonlinearities.

Any linear stage may be considered a network of linear elements represented by
a transfer matrix equation.

18
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Y (s) GI (s) G12 (s) ... Glk (s) U1 (s)

Y2 (s) G21 (s) G2 2 (s) ... G2 k (s) U2 (s)

Y (s) G. (s) G.2 (aS) k (s) Uk (s)

Use of the state space notation to calculate the system outputs minimizes compu-
tational requirements.

Y(t) = CX(t) + DZ(t)

X(t + T ) = A*X(t) + Btr(t)

This state space form implies both a digital representation of the entries in the
transfer function matrix, as well as conversion to a more compact form. Appendix A
provides details of how to digitally represent continuous elements, while appendix B
explains how to apply state space notation to achieve the above form. The salient
features of appendices A and B will be summarized here.

The outputs of each stage may be efficiently calculated in real time knowing only
the entries of the two state space matrices C and D and the input and state vectors.

The state vector may be updated between successive calculations of the output
vector if the A* and B matrices are known. The entries of the state space matrices
may be determined directly from the entries of the transfer function matrix by specify-
ing the following.

For each linear stage:

1. No. of nonzero transfer matrix entries.

2. Order of highest order entry.

3. Number of outputs.

4. Number of inputs.

For each transfer function:

1. Number of first order numerator factors.

2. Number of second order numerator factors.

19
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3. Number of first order denominator factors.

4. Number of second order denominator factors.

5. Transfer function gain (const.).

6. First order time constants, second order frequencies and damping ratios.

7. Location in the transfer matrix (subscripts).

Each transfer function is first expanded into two polynomials in S by an iterative
procedure which calculates the coefficients of any polynomial expressed in factored
form. If 2 is temporarily redefined as the number of factors which have been multi-
plied out, the polynomial after Q terms is

Sai s F
Q

where

a -1
00

All complex factors must appear in conjugate pairs to assure all a~i are real.
Therefore, if the next factor is first order

a(Q+)i = (a + a~. o), 1/r

while noting

a=0 ifi <o ori>V

If the next term is second order,

2
a =(a +2 w a +a(+2 vin n (i-1) V(-2

The expansion process is continued until all n numerator coefficients, b . and all

denominator factors, a m, are obtained.

A matrix of coefficients reflecting the expansion of the first order factors

m j i rni
E h.. z = (z-l) (Z+l)m -

j=o2

20
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For m > i > o comes about as a result of using the Tustin transformation.

2 = 2 --)
4T s(z+1)

To produce a difference equation

m P ijM-1 P
Y (t) = k .LU (t- (m-j) T) - .. LY (t- (m-j)T)

2m

Whose coefficients

4 ~n ji-
P.= b 2 LTM- h..

1] . 5 1
1=0

P ~ a . 2 1Tm- h.

have the relationships

P
2 in-i

SP2m

b kP
2m

With the state space matrices.

.11 0a I O...O0

-a* 0 1 *0
A= 2

Ia ..0 00

21
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Where a* a is selected from the ith row of the matrix
j ji

a a a
11 21 ... ml

a12 22 ... am2 one row for each of the R elements.

12 22 ... m2

When multiplying the jth row of A* by the ith column of the state matrix.

X11 X12 ... X12

X 21 22 ... 2Q

X X

Xml m2... m"

Each column of X is the state vector for each of the Q elements in the system.

Also B B B
11 12 ... 1V

B B B
B 21 22 ... 22

Bml Bm22 ... Bmv

Where for each of the 2 elements each column is defined by.

B, =b. - a. b m>l >1I I 10

The matrices C and E are found such that If the Qth element occupies the jth row and
kth column In the transfer matrix

And ifG2 =G k, Ekv 1 otherwiseE 0

Cj =1 C =0.

22
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And the matrices B and D are obtained by matrix multiplication

B = B' E and D-- C b E0

Where

b 0
ol

b 0 bo2
0

boi

All linear stage schematics may be reduced, through block diagram algebra, to

a transfer matrix form.

Only the multiplication of the state space matrices must be accomplished in real
time. The matrix entries may be calculated during program initialization. The state
matrix should normally also be initially zero.

Some special problems exist with certain types of nonlinearities. In addition,
the control system equations may be used to perform certain auxiliary functions such
as integration, filtering, or engine dynamics modeling.

If gain scheduling is used on any transfer function, simply set the element gain to
unity and calculate the new stage input k(t) U() in the previous nonlinear stage.

Closed loop systems containing nonlinear elements present a special problem.

fut Jtl)

u It)N.L. N (sTYLt
ELEMENTI 1 s 14ELEMENT

The existence of nonlinear elements inside the feedback loop prevents reduction

of the system to a single linear element. Since both u(t) and f(t) must be known to
determine y(t); and since y(tP must be known to determine f(t), y(t) must be known to
determine y(t) without such a reduction. If the nonlinear elements are schedules or
computational nonlinearities, they change the system characteristic equation and
necessitate the calculation of the state space matrices in real time. If, however,
they are switching functions there are only three possibilities:

23
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1. Switch 2 is open (y(t) = Ylim)

2. Switch 2 is closed, switch 1 is open (v(t) = Vlim)

3. Both switches closed (nonlinearities ignorable).

This system may be represented by three separate systems over the next cycle
interval.

NONLINEAR STAGE

vLIMYLIM 
--- e

I t)) u It)

It-G l(s)lH (s) f ( f t )I I

1 _+ G Is) H Is) Yl

The succeeding nonlinear stage may compare U(t E f(t) and Vlim to determine
if Yl(t) or Y2 (t) will be compared to Ylim' thus choosing the correct value for Y(t)
from among Ylim, Yl(t), and Y2 (t).

It may be noted that very simple elements, such as multiplication by a constant,
may be considered either a zeroth order transfer function or a simple computational
nonlinearity.

Because of the time required to execute the logic of the linear element repre-
sentation, such simple elements will be considered most efficiently represented as
computational nonlinearities.

To use rotary and oscillatory balance data for departure and spin modeling, it
is necessary to separate the steady and unsteady components of angular rate. In
addition, a number of variables describing the aircraft flight condition must be inte-
grated. While these operations are not explicitly shown as part of the control system,

24
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they may be easily represented as a network of linear elements just as are the linear
stages, i. e., the subroutine that handles the linear stages may be called from the
main program to perform these functions.

Reference 1 contains several F-14 control systems of interest which have been
combined here to form control systems A and B. System A represents the current
F-14 control system including a Grumman designed Aileron Rudder Interconnect (ARl)
intended to alleviate wing rock and roll reversal above 15-degrees angle of attack.
The high gain of this system has been found to create lateral pilot induced oscillation
(PIO) tendencies above 20-degree angle of attack. For this reason the F-14 is cur-
rently being operated with the ARI (Lateral Stability Augmentation System (SAS) switch)
off. System B represents a design effort by NASA Langley to alleviate the PIO ten-
dencies of system A with the lateral SAS on, and has recently been flight tested at
NASA Dryden.

The following diagrams are based on information taken from references 1 and 2,
but they have been rearranged tc facilitate application of the digital control system
representation presented here. The engine model is a simple first order filter as
used in reference 1. No attempt is made here to model the Approach Power Com-
pensation System.

25
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CONTROL SYSTEM VARIABLES

SYMBOL DEFINITION UNITS

SYSTEM INPUTS:

h Altitude ft.

M Mach No.

Nz Normal Load Factor (az/g)

N Lateral Load Factor (a /g)
y y

p Roll rate Sec'

Q Dynamic pressure Lb/Ft 2

Pitch acceleration Sec-2

-1
q Pitch rate Sec

-1
r Yaw rate Sec

a Angle of attack Deg.

aDER  Rudder pedal deflection In.

6LAT Lateral stick deflection In.

6 6 LONG Longitudinal stick deflection In.

SSASWD Directional SAS switch position

SASWL Longitudinal SAS switch position

6 SASWLT Lateral SAS switch position

6TRD Directional trim switch position

STRL Longitudinal trim switch position

5 TRLT Lateral trim switch position -

8THL Left engine throttle position In.

8THR Right engine throttle position In.

26
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CONTROL SYSTEM VARIABLES (Continued)

SYMBOL DEFINITION UNITS

SYSTEM INPUTS (Cont'd.)

8Aman Position of manual sweep override switch

Manually selected sweep angle Deg.A man

* A Wing sweep angle Deg.

A aut Output of wing sweep schedule Deg.

Total angular rate Sec-1

SYSTEM OUTPUTS

Flat. Total force applied to lateral stick Lb.

Flong Total force applied to longitudinal stick Lb.

Fped Total force applied to rudder pedals Lb,

&a lir Differential tail deflection (limits applied) Deg.

Stabilator deflection (limits applied) Deg.

liRudder deflection (limits applied) Deg.

Spoiler deflection (limits applied) Deg.

8 rpli

6tcl, 6tcr. Engine thrust levels 7 max thrust

All other variables are used internally.

Variables E.. and D.. represent input data

associated with switching function and

computational nonlinearities in the ith

nonlinear stage.
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CONTROL SYSTEM DIAGRAMS

INPUTS

q LOGTDNLRATE GYRO

' SASWLSASWTHLMT El

'LONG LONGITUDINAL GEARING SCHEDULE e

M MACH TRIM SCHEDULE76S

h WING SWEEP SCHEDULE

6A MAN MAN SWEEP OVERRIDET

-%MAN Ac \MAN, OF' \c A~UT *\CO SWE

'TRL - T"RIM RATE SWITCH: E77 tr

'TRD -TRIM RATE SWITCH' E15  -.. trr

FIGURE Ia. Control System A: First Nonlinear Stage
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SYSTEM

INPUGS
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SSSGAI DISCHACE EROMETER
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TABLE I.

CONTROL SYSTEM A- FIRST LINEAR STAGE

FIRST LINEAR STAG

INPTS E ? 21 U3  U4  U5  U6  U7  U8  U9

qSMSr LAT K Ny rLIM 6 tre tra trr MAN

Y 2 Y3 V4  Y5 Y6 7 8 Y9
OUTPUTS:~ 2

6 q 6r 82 6r3  6 r4  
6tre 6 tra 6 trr -MAN

Transfer Matrix entries:

G1- G2 8. G3=8.56
S+.5 22 8.SS+8.

G4= 20. G5=6= 1
S+20. S +.5

I1 1 G9 1

Engine dynamic model

U 1 0  u 1 1  u1 2  u 1 3

5 THL E2 THr E26

'THL 5THL2 'THrl 5 THr2

G 1 10G 1 12S +2. G1, 11 G,131J S+ 5 ,

30
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seqlLIMI TES, ± 21 eqi LIM

6 tre + LONGITUDINAL SPRING --o FLN

6DIrr + DIRECTIONAL SPRING lpFpED

5LAT

6 tr + LATERAL SPRING FA

6 LAT LIM + SPOILER GEARING SWEEP SWITCH p
+ SCHEDULE sFA>E= 0s22

6a1

a2-TEST, ±E2  a2 G12 a3

G32 -rG

6~ r5

~r3 - ± E24 +____

* I~ 6 L -4 ELINI E STL ____

6 THR1 -mEGINE STALL 1. TCR
'THR2 -*TEST: IF ISTALR

FIGURE 2. Control System A: Second Nonlinear Stage
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TABLE II.

* CONTROL SYSTEM A.
SECOND LINEAR STAGE

INPUTS: ul 2 u3 u4 5

8a3 E32  34p E r E36

OUTPUTS: Yl Y2  y3  Y4 I 5 I 6  Y7

Seq2  Sa4  3a5  6sp j 5spl J 5r6  6 r7

Transfer Function Matrix:

1.0114 (S+5) 2  90
G1=(S+1.887) (S+ 13.4) G2 66 (S+90)

20 2 G33 G 90

G44 ~ ~ ~ 6+0 
G5 S77 

S
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6eq2 LIITS:±6 .. eq2 LIM

6a
~a4LIIES +

6 a5 ____E33____ ac

8ap

Sspi __________ RAT LIMIT

5 r6 _-OLIMIT TEST +

5r 0I-Q~
0  +E3 7  + rc

6rp

FIGURE 3. Control System A: Third Nonlinear Stage
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TABLE III.

CONTROL SYSTEM A: THIRD LINEAR STAGE

INPUTS: U u2 U3

8eq2 LIM 6rc E45

OUTPUTS: Yl Y2  Y3

8 eq3 6r8 Sr9

Transfer Matrix Entries

Gi -' 66.67.. G 2.0 G
Ss+66.67 22 s G33
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LIMIT TEST: i LIMIT TEST:
Sec1 E4 1  t±4

+

Sep

66 rc

6r9  t "6 I

FIGU RE 4. Control System A: Fourth Nonlinear Stage
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TABLE IV.

* CONTROL SYSTEM A: FOURTH LINEAR STAGE

INPUTS ul U2  U3 4  J
51Hrc E51 6111C ± 51

hOUTPUTS 6 l Y12 Y3L Y4L

Transfer Matrix Entries

G1,G3 S20G2 G4
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.

HrlC RATE LIMIT

_TEST; ± E5 ,

Hl - LIMIT TEST

+E54 -E5 3

S-0LIMIT TEST

051 E56 S Sa LIM

II

FIGURE 5. Control System A: Fifth Nonlinear Stage
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M - GAN INCHEAIN

8LT - GIN SCH<EDULED15

~DRGAIN SCHEDULE 6 Ff

SWE

FIGUR G.ACNto SystEmUL 5: Moiiain GoFrs5olnatg

5DIR FGA SCHEULE 38G
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- LIMIT SCHEDULE

FIGURE 7. Control System B: Modifications To Fifth Nonlinear Stage
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CONTROL SYSTEM CONSTANTS

TABLE Va.

CONTROL SYSTEMS A AND B

FIRST STAGE: __________

E E11 = .8727 sec 1 (500 /sec.) E17 = 2.356 sec 1l (1350/sec.) El 13 = 1 g.

E 2= 15'/sec. E18 = 190 E 1 14 = .8727 sec-1

E1 3 =.5 in/sec. E19 =1 in. El 15= 1 in.

E14 =.19 in/sec. El1 0 =j .55 El 16= 1 in.

E 1 5 =.13 in/sec. E, ii==1in. E 1 1 7 .35 sec'1

E6= 4.363 sec-' (250* /sec.) El 12 = 1 in. E 1 18 44

El 1 9 =25' El________ 20___=___45'_

D,= 3 Ib./g. D16 = .15 D1 = -100/in.

D1 2 =l 1D- 1 7 2. D1 12 =9.15'/g.

D = 7.428 Ib-sec2  D8= -38.96* -sec. D 1 13 = 22.50 /g.

D4= 2*/in. D19 = -12.660 /in. D114 = -57.3O -sec.

D5= .04 D110 = -20 /in.

SECOND STAGE: _________[E21 = .2618 sec" (10 /sec.) IE23 = 100 E25 = 21.5'

E2= 550 E2 4 = 500

THIRD STAGE:
250,E3 .2618 sec-1 (1 50/sec.) E34 = 12.50 /sec. IT0 /sec.)

3*E 3  .36670 /sec. Q0 /sec.) E3 = 550

E33 5' ~E36 = .70440 /sec. 63 '4'/e.
(90/

____ ____ ___ ____ ____ ___ ____ ___ E3 7 = 190
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TABLE Vb.

CONTROL SYSTEM CONSTANTS (Contd.)

FOURTH STAGE:E41 = .175 sec"1 (10. /sec.) E43 =5.3 /sec. (-o °/seco.)

SE 4 2 = 3 * E44 = 3 0 °  D41 = 17.19*-sec. (.3 / /sec.)

FIFTH STAGE:
E51 = 1.8/sec (0/sec.) E5 3 = 35 E55 = -33 °  D51 =.5

E52 
= 15* E54 = 10* E56 =12o

FOR CONTROL SYSTEM B CHANGE

D19 -6.33/in. = 11 4 .6o -sec.

41
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CONTROL SYSTEM SCHEDULES

MACH TRIM:

2.7

6 LONG IN 1.2 -

.65 .95 1.2 2.1

WING SWEEP:

68 -r .
h< 14K h >20K

ADEG.

201 -1.98 1 1
.4 .62 .915 1.5 2.0 2.5

M

LONGITUDINAL SPRING:

FLONG -LBS

-- 16 t2LBBREAKOUT

'LONG~ IN

LATE RA L SPR ING:

10.5-

FLAT - LB 2

±2 LB BREAKOUT

6 LAT -IN

FIGURE Sa. Control Systems A & B: Schedules
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DIRECTIONAL SPRING:
30

3
FD IR -LBS + * -h -

-3

-30

8DIR- IN

SPOILER GEARING:
-55-

-3. .5
sp 1775 3.5

'LAT

GAIN SCHEDULES:

1. -1.0 1.0

G+M<.55 G + M<.55G+

13 310

200 240 200 240 100 150 200 250
a1 a a1

3.0 1.0 1.01.

G4 G G G

0 0 0 0
.55 .70 2. 3.5 1.0 2.5 30C 400O

M 6 LAT -IN 5DIR -IN at

+ SYSTEM A ONLY
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DIGITAL CONTROL & SIMULATION

An important difference exists between digital simulation of continuous linear
elements and the design of digital control systems even though they both employ the
mathematics of the discrete time domain. Digital control theory is concerned with
determining the sampled or continuous response of a continuous system subjected to
a sampled input.

DIGITAL CONTROL

y(kTs)

TS

The Z transform method is directly applicable and may be used to obtain exact
solutions because the actual input to the system is sampled. This result is achieved
by inverse Laplace transforming the transfer function to obtain the impulse response,
and then Z transforming the resultant function of time to obtain the impulse transfer
function.

G(z) z r. - G (s)]

In contrast, digital simulation seeks an impulse transfer function which when
subjected to the sampled input yields a sampled output which is a good approximation
to the sampled version of the continuous output signal.

DIGITAL SIMULATION

u(t) G(S) y(t)
I~~ ~~~~ (k Ts)l (----yk

y(kT) approx.
s y(kTs) Equal.

Ts

The equality can only be approximate because u(kTs) represents u(t) only at
discrete instants. G'(z) must account for the variations in u(t) between sampling
instants. Furthermore, since G(z represents the response of system G(s) to

*• sampled inputs and G'(z) the response to continuous inputs, G(z) and G'(z) are not
generally equal.

A-1
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For computer programming purposes, it is necessary to determine G'(z) and to
inverse Z transform to obtain a difference equation relating the output at any sampling
instant to the previous values of input and output. To fully explain how this is done,
a brief review of sampled signals and Z transforms is in order.

APPLICATION OF THE Z TRANSFORM

A sampled signal is produced by an ideal switch which opens and closes instan-
taneously. The switch usually closes at regular time intervals, t=kTs, and remains
closed for a very short period, At. This period is sufficiently small that the sampled
signal may be considered constant during the sample period.

u) ult) = u(kTs ) -u(kTs)
U(t) U(t)

kT s

0 Ts 2Ts 3T ......... kTs
t

The sampled signal is therefore a series of square pulses of finite amplitude and
very small width. The time interval At is imprecisely defined but constant. As such,
it represents a constant scale factor which would be carried along through any linear
equation without adding much to the understanding of the system. We may eliminate
At by normalizing the square pulse, us(t), to give

1
U*(t) - U(t).

Since the square pulse has the property:

kT + At
kT (t) dt = u(kTs) At,

kTf u5 ts

The normalized pulse has the property

kT s + At

kTf u*(t)dt = u(kT).
s

From this equation we suspect a close relationship between the normalized pulse and
the unit impulse function, whose integral is unity, and which is comprised of tvo step
functions whose amplitudes are adjusted as At - 0.

A-2
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1I1 -kT 9 (1 -e-at5)
)(t) at e S' as at-O.

In order to insure u(t) constant over the interval at, we must allow At to become
vanishingly small and the normalized pulse

-1 u(kT) -kTs (- eats
ut s as At - 0.

Therefore, the normalized output of the sampler is a series of impulses whose strengths
are equal to u(t) at each sampling instant.

u*(t) = u (kTs) 6(t)

Laplace transforming gives

u*t) = ukT ) e s

If all the normalized pulses for all sampling instants are Laplace transformed and
summed, and if the substitution,

Ts
sz--e

is made, the expression for the Z transform is obtained

u(z) = Z [u(t)] = E u(kTs)Z-k

k=o

The Z transform can be applied to any function of time and may be viewed as a
discretized version of the Laplace transform

(- st
£ [u(t)] = j u(t) e dt.

The Z transform is a special case of the Laplace transform where the function
being transformed is a series of impulses; therefore, it obeys the same algebraeic
rules. It also has some unique properties of its own. One of its most important
properties can be obtained by expanding the terms of its definition equation

A-3
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u (T) u (nT s ) u((n+l)Ts )
u(z) =u(o)+- +...+ -+ +

z n n+1
z z

The time at which k=o, t=o is an arbitrary choice. Suppose the time where u(t) = u(nTs
were chosen as the time for k=o, t = t+nT s . The Z transform of this function expands
to,

u((n+l)T
Z [u(t+nTs)] = u(nTs) + +........

whose entries differ from the terms of u(z) for which k>n only by the factor Zn

nu(z) - Z u (t+nTs n u(o) zn-u(T ) + . + z u((n-1)T )"
zn~z- [(ztu)o+ n..-i

THE DIFFERENCE EQUATION

It will now be shown how this property allows the current value of the output to be
expressed in terms of the previous values of input and output.

Recalling that the choice for tfo is arbitrary, the right hand side of the preceding
equation may be made to vanish if the system was at some previous time quiescent.
This may be accomplished by choosing t-o
sufficiently far back in time so that the
first n samples are zero. This yields the U (t)

relation;

z nu(z) = Z u(t+nT) 0 TS 2TS 3TS 4T

I s t

More importanT, the inverse Z transform of any such function of Z is simply the
value u at the n sampling instant in the future.

Z-i znu(z)} = u(t+nTs).

This result is completely general and applies likewise to the output function, y(t).
In general y(z) and u(z) are both infinite series but may be represented approximately
by a finite number of terms. All Impulse transfer functions represent the Z transform
of some system's impulse response which does not change with time. Therefore, it is
always possible to obtain an approximate impulse transfer function as a ratio of con-
stant coefficient polynomials in Z.

y(z) _ ~ ) = P (z) 
u(z)

A-4
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which may be expanded to

2 m
P20Y(Z)+P21(z)y(Z) + P2 2 z y(z)+ .+ 2m y(z)

n
10''Z i.••Pnz u(z)

which when inverse Z transformed gives

m n

P' P21y(t+iT ) = Pli u(t+iTs )

i=0 i=o

or alternately

n M-1

y (t+mT) E P
-. m- u (t+iTs) - E P21 y (t+iTs)" P m P2mS

i=o i=o

Simply by considering the value of y (t+mT s) to be the current value of the output,
we can make the substitution

t = t-mTs

to obtain

n M-i

Y(t)= u (t-(m-i)Ts)-5 P2i y (t-(m-)Ts)
P2m S 2m s

i=o i=o

We have the current value of the output in terms of the previous values of input and
output. However, a method for determining the approximate impulse transfer function
G'(Z) in terms of the ratio of constant coefficient polynomials in Z must still be
developed.

CONVERSION OF TRANSFER FUNCTIONS TO DIFFERENCE EQUATIONS

A linear element is customarily defined by a transfer function that is usually
expressed as the ratio of factored polynomials in S.
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n

k 77r (S-r)

Y(S) = G(s) = i=l m>h
U(s) m

(S-r.)

J=J

If the transfer function polynomials are expanded and divided by Sm, this equation
may be stated in terms of the forms

a. y(s) bi U(s)
and

s si

Inverse Laplace transforming these terms is equivalent to integrating a i y(s), j times
or b i u(s), i times. If the integral can be Z transformed as a polynomial in Z times
u(z) or y(z), a representation of G' (Z) of the required form will be obtained.

The sampled signal y(z) represents y(t) only at discrete instants t = kTs . In
order to integrate y(t) some approximation to y(t) between sampling instants must be
assumed.

rectangular trapezoidal

y(t) y(t)

t t

To obtain the value of the integral in polynomial form, y(t) must be expressed
(approximately) as a polynomial.

y(t)'- g t.

i=o

A-6
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Where the constants, gi, are determined by satisfying the constraint equations

2

y(jTs) = gjT)i k>j>k-

i=o

(k = latest sample no.)

The integral might be determined by considering the polynomial to represent y(t)
over either of two intervals;

case 1: kT st> (k-l)T

case 2: (k+l)T s >t>kT s

11M t - multiples of T.
K-Q K-1 K K+1

Case 1 would be expected to be more accurate for Q>0, because y(t) at both ends of the
interval are known. For Q=O there seems to be no particular advantage to either case.

The choice does make a difference in the final form of the Z transform. For now
we will refer to the integration limits as kTs and (k-1)T * so that

fkT Y(t)dt = gi T~ ki+1 - (k1
T+I s -( )+

(k-1) T i=o

over all j intervals from 1 to k

kT y(t) dt = gij Ti+ "

fi T1 s

0 j=A i=o

A-7
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J0
Z transforming, and realizing that y(t) dt 0

Case 1

s gj i+j ji+I i+I z-k
Z y(t) dt = T "

k=1 j=1 i=o

For case 2, the limits are changed so that,

f(k+ )T s  g T ki±l}

y(t) dt= T (k +1) k
kT i+ l T+ S
fkS i=o

But there are now k +1 intervals

(k s gj (j+,i+ 1
y(t) d(t)= T i +11+1 s

Sj=o i =o

~T
Also the value of the integral is not zero at k=o, since s y(t)dt # 0.

Case 2

fZ Iy(t) = i T... T i+l (j+li+l _ 'i.l z-k

k=o j=o i=o

Although not readily apparent, this infinite series is equivalent to a geometric

progression expressible as a finite polynomial in Z. Since specific expressions are
needed, it is best to demonstrate this fact with an example.

A-8
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Consider the simplest rectangular or zeroth order approximation to y(t).

=O, y(t) = goj = yOTS) rectangular approximations

CASE 1

The Z transform of the case 1 approximation y (t)

gives
t

Z y(t) d =tlj] y(oTs)T s Z yMt

Whereas case 2 gives t

f k+1) Ts 1 0

Z y(t)dt = y(jTs) Ts z-k

Expanding the summations

Z [f s y(t) dt = TS y(T) + y(T) + y(2T) +

z 2O z

Z f +1)Tsy (t) dt = T S  y(o) y(o)+y(T) +.

We see the difference between the Z transform in cases 1 and 2 is

z

The bracketed term is a geometric series which we can see has a finite expression

if we allow

1 1Q 1+-+ +'

z z

A-9
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and

z z z2

so that, subtracting

z
Q or Q =

Thus making the difference between cases 1 and 2

(klT dt] _Z [f T )
' s s T z

[ y(t) - M y- s y(o)
fo0z-1

The Z transforms themselves may be rearranged so that

(0 dtjT + [YT +x~

0J ~ t TS 1~. E(o) +ZT + y(2T) +*

+ etc.

or

Z yko y(t) dt = Tsy(Z) I +lz +  1  + "

1
Which gives for the rectangular approimation

Case 1.

Z [fykT y(t) dt (z-) {y(z) - y 

Case 2. 1s Tzf k +1)T T

y(t) dt = ) y (z)

A-IO
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For an initially undisturbed system y(o) = o, and the Z transform of the integral
is independent of the integration limits.

~ = (z -1) y (Z) ~

Similarly for case 1 with Q I

[f T 0y(t)dt1  T + g ~g + 1 T (j-1/2) -k

Also; y OT) g +g1 OT)

5 03 ij 5

so that,

T gj y(jT) - y (0-1)TS)

g. j y((j-1)T)- (j-1 y (jT

Therefore

Z[ Tsy (t) dt] T k 4-4~ - j-) + y(jT

k--I j=1 -jy4.4 -+ jy4XjL4- 1/2yjs Z-k

+ 1/2 y(O-1)Ts)

Tl7 S ~ y (( 4)s)--y(jTs) z -.12z E
k=1 j=1

Expanding

y(o) +y(T ) + y(o) +2y(T + y(2T
T S S

T z

A-11
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Separating out:
y(Z) =y(o) +y(T )+ y(2T

Z Z 2

reduces to2

y(z) (I1+1/ Z + /z

T +y(T (I (+1/Z +1I/z +* )
S s

2z
y(2T

s(1 +1/Z +1/Z 2+.

+...etc.

T

-( (- 1) y(z) + Z [yt+T5 ]

From the property of Z transforms on page A-4, with n=1 we can write

[~.T (t) = 2 ~ (+) ) -z Y(0)
02(z-1) yz

Setting y(o) =0 and removing the integration limits:

4 Fr 1 =TS (Z +1)
*Z [J(t) dtj 2(1 y(z) Q 1

With considerably more labor we can obtain

z ~~S (z2-)~) Q2

Ify (z 2 + 4z+l)

* - We might generalize that for the Qth order approximation to y(t)

(t) 1t T S q(z)
Z[Jf dtJ + q1 (z) y (z)

where q 1 (z) and q 2 (z) are th order polynomials in z for V > 0.
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In going from the Laplace domain to the Z domain, we may write;

a* sr Z a1 a ft t q 2

-- y(s) -- fy(t) dt1 q(z) y z)

which is equivalent to simply changing y(s) to y(z) and substituting.

+i ql (Z)

T q2 (z)
s

The principle is extendable to multiple integration so that

S -
i  q1 (Z

Ts q2 (z)

and the substitution algorithm has general applicability.

G1(z) = G(s) 9+1 ql Z)
! S - T S  q2 (z)

Since G(s) is the ratio of finite polynomials in s, this substitution produces a ratio
of finite polynomials in z which when inverse Z transformed express y(t) as on page
A-5 as

n m-1
-I1 q~ 21y(t) u(t-(m-i)T ) - y(t-(m-l)T s).

PF2m s 2m
i=o i=o

USE OF POLYNOMIAL EXPANSION AND THE TUSTIN TRANSFORMATION

To relate the coefficients of this equation to the transfer function roots and to the
order of the approximation to y(t) and u(t), we need only have a general method of

expanding polynomials. Such a method can be found by expressing a polynomial after
2 factors have been multiplied out as;

P2 (s) a i s where a0 0  1.

i=o

A-13
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All additional factors may be broken into first or second order factors. If the
next term is first order,

Q+i
1/r)a( i s

P+(a) = (s + I/7) PR (s) = + a,, = 0

i=0 if i >

Q+ +

i=o

If the next term is second order

PQ+2 (s) = ( 2 +2 wn n 2 P (s)Q2n n 2

Q+2

PQ+2(s) = (aiW n n+ 2 a (i-i) + a(i-2)) 5

i=o

If we make the substitution

Q+1 q (z)

Ts q2 (z)
th t

into the n order polynomial is S, we obtain an Qnth order polynomial in Z, and we
must keep track of the last Qn values of input and output to calculate y(t). There is

4therefore a tradeoff between complexity and accuracy in selecting a value for v. The
substitution for Q=1 has been used extensively as a good compromise value and is
usually called the Tustin transformation. *

2 (z-1)
S -T (z -i)

th thIf a transfer functions n order numerator and m order denominator are ex-
panded into polynomials of s, the Tustin transform may be applied to give

*See reference 4
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m i n

Y(Z)r a- [( 1 n 2 (z--1.l

i=o i=o

where k is the transfer function gain.

Multiplying both sides of this equation by

T In
T (z+l) mS 

e

gives:

In

i rn-i r-
y(z) a 2 T (z-l) (z+l) m -

i=o

n

i rn-i i rn-iku(z)E b i 2 T - (z-l) (z+l)

i=o

th

The result is that both sides of the equation contain m order polynomials in z. If the

expansion of the ith set of z factors is defined as

E hi j z = (z-l)
i (Z+l)

m - i

j=o

hi. for all values of m > i > o may be calculated using the factor expansion process

developed on page A-14.

This then makes the expanded version of the impulse transfer function (G'(z))

"]In In n In

y(z) a 2 iTmi hi = ku (z) b b 2 iT rnM-i hijz

i=o j=o i=o j=o
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Making the coefficients of the difference equation

y(t) = P 2 u(t-(m-j)T s) - y (t-(m-j)Ts)P2m P2m

equal to

n

P = b 2 i T m-ih..
j ni s ij

i=o

m
= iT mn-i

P2j ami 2  s hij

i=o

Thus the difference equation representing the inverse Z transform of G? (z) may
be obtained directly from the transfer function G (s).

In order to calculate y(t) directly using this formulation, we require the storage
of 2m-1 coefficients and a like number of past input and output values for each element.
Significant efficiencies in representing single and multiple element systems can be
achieved using the state space notation of appendix B. This method minimizes the
variables and algebraeic manipulations required to calculate all system outputs while
also presenting a very flexible means of representing the system element structure.

In order to demonstrate this formulation two simple examples are now presented.

Example 1: First order filter

G(s) = k n=0, m=l, (s+ a)

Using the expansion procedure

a00  b 00 = 1

1 1

Pl(s) L (aoii1 oi Es.= a i
i=o i=o
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a 0 = a-W+a a=

a10 O1  0 3 01

I. Also expanding

J=o

gives h =1 h I1
00 01

h =1h =1
10 1

Evaluating the difference equation coefficients

P 10=b 00T h 00=T S P1 =b 00T h =1T

p 20 = a10 T Sh00 + a1 1 2 h 10=(oT-2)

P 21 = a1 0 T Sh 01+a 1 2 h 11= (uT S+2)

making the difference equation.

4 y(t) k {u(t) +u(t-T 5) (uT S-2) y(t- T
(o + 2/T ) + (aT 5S +2) 5

Example 2: First over second order system

G () 2k (~ 2 n=1, m=2

n

Expanding the numerator polynomial as with example 1's denominator

b =o, b =1.10 11
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Expanding the denominator

2

P2 (S) 1: a o n 2+2wn ao i-1 i2

i=o

2 2
20 a 0 w + 2 a -~ w

4201 0 =~ n2 n + V-2 an~~

2+

22 ,o'02 + n 0-1 + 00 1

Epding

rn-i V
(z-1) (z+1) = h.. 2 2> i>0

j=0

for i =o

2

4(Z+1) (Z+1) I: h . Z

j-0

using the notation

4 Qh =h.. after Q factors expanded

Oh00

lho = O ,+(hOx1

lh Ol= =h0 ( x1
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ho =2h 00I

00 00 1j~ 1 (1h00 )h0 = 2h0 = lh + (lh0 xl1) =2

h 01 = 2 01 = 1h00 + (1h01 x 1) = 2

hh 0 2 2 = 1h 0 1 + (1Y x 1) = 1

which can be verified by

2 2
(z+l) = z +2z +1

Without bothering to demonstrate the expansion formula for i=1 and i=2 we have

h =-1 h =0 h =1
10 11 12

h20 h =-2 h22 =1

The difference equation coefficients are-

Pl10 b 1l0 Ts h 00 + bl11 2 T S h 10

2
OT T S  - 2 TS 

= T S (a Ts-2)

P1 0 = b10 TS h01 + bll 2 T S h 1

2
= 2oT2S  T2

P 1 2 = b10 TS h02 +b 1 2T S h12

= UTs2 +2 TS = T S (o T s+2)

P20 a 20Ts2 h 00  a 21  T S h 0  a224h20W21 2 = T h 4b T h422

n S S s n

n A-Sn
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2
P 21 a 20T h 01a 22Ts h 114 a 22h2

2T2
2 (wn T -4)

p22 a20 TS h02 a21 Sh12 a22 h22

4 " T
2 2 s

T + + 4.n-- s n

Making the difference equation

k T s (oT s-2)
y(t) u 2 TS u (t-2TS)

n S +4

7 2kT 2 7
+ S u (t-T s)

2L S2 4 t Ts
n Tn

+ k Ts(Ts+)u(t)
k2 T 2  4 t" T S

Sn s n

TS2 
- 4 Ts/W +

n 2  + 2 Ts/ n + y (t-2T s

In 2 (w n2 T 2 _ 4) 4

y (t-T

n2 TS2 + 4 T s/ n + 4 t

A-20
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THE STATE SPACE CONCEPT

Any time invariant linear system may be described in the continuous time domain
by a linear ordinary differential equation of the form.

dm-1y dy b dnU --+a - + a=+ayb +. -+bu nm
dt dtm-I m-1 d" m o dtn n

or in the discrete time domain by a difference equation of the form.

P P kPrn- P20 kim P10
+y(t-T) + 0 +- y(t-mTs) =f- u(t)+.-, +- u(t-rnTs)

P2m P2m P2m P2m

The similarity of these forms suggests that either equation may be considered a
linear combination of 2m dependent variables. Those in the continuous domain are

related by differentiation, those in the discrete domain by a time shift. The analogy

is complete in the Laplace and Z domains since

£ am_ 1  =a Siy(s) and z -- y (t-(m-i) T = -- y(z)
r-i dt P2m F2m

Thus realizing that we may interchange

S "P2 - kP1

s 'c=;z,- m  a.<-=: m b m etc.

we may adopt a notation convention for these two equations such that for any function g.

j dog
g =i or g g (t -(m-j) T). j =m-i

dt
3

The differential and difference equations naw have a common form which may be

expressed in either of two useful forms. The coefficients of the differential equations
are used for simplicity.

m In

(a y -b u) +(a yt b ') +... + (y -bum) = 0 Eq..1
m r rn-i r-i o

B-i
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or

1 mIi i b I
y =' b * -a- +- u Eq..27- rnM-i rn-i a

Output State Input

The output, y, is dependent only on the input, u, and the first m higher orders of
y and u. If we are only interested in the output value, we may set all orders higher
than mth to any value, especially zero, without affecting the output calculation. In
doing so, we cause equations 1 and 2 to imply a whole system of m+1 equations
obtained by differentiating or shifting equation 1 m times.

Equation Set A

(a y-bmu) + aU) +"'•by -b U )

(aMY1 bI ul) + (am-ly2 2 bm-1 u2 + (aly m - b Iu n 0
my-b u m) (a m- u).y.+(-y bu)=

(amy m - 1 -b )+ my -b u) = 0
m i - r-

m In maY - b u =0

In the case where set A represents difference equations, it is clear that the
various orders of y and u represent the past history of the input and output. The same
is true for the differential equation interpretation of set A since the derivatives of y
and u represent those time histories by virtue of their Taylor's series expansions.

Because an initially quiescent system requires some type of input to disturb the
system and produce an output, output may intuitively be considered a direct conse-
quence of input. But the system equation indicates the output also depends on the past
history of both input and output, by virtue of the higher order terms in y and u.

This intuitive notion leads to the concept of system state as a combination of all
factors, distinct from the input and associated with past events, which contribute to
the output. The state may further be defined by a set of state variables whose values,
along with that of the input, determine the output. It is clear from equation 2 that state
variables, xi, may be defined so that

y = Z C.x. +Du
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which is most often written in matrix notation as

y = CR +Du

where C is a row vector, D is a constant, and x a column vector (the state vector)
whose components are the state variables. What is neither clear, nor in fact unique,
is how to associate the state variables with the terms of equation 1.

A logical first step in establishing such an association is to de.ermine how many
state variables are required. Equation set A represents all the equations necessary
to describe the system. Since there are m+l equations, m+1 variables are required
to make the set determinate. That is, set A may imply the value of an m+2nd variable
if it can be restated in terms of m+1 other variables whose values are 1pnown. Since
y is the variable whose value is sought, it may be considered the m+2 variable
whose value, according to the state space form of equation 2, is determinable directly
from u and the state variables. Therefore, there must be a minimum of m state
variables, and any additional state variables are unnecessary and may be eliminated.

Consequently, if they are properly defined, there will be m state variables which
are linearly independent since none may be eliminated. Therefore, the state space
notation is more efficient than a straightforward application of the difference equation
because it reduces the number of variables (and their associated manipulations) from
2(m+1) to m+2.

The state space form of equation 1,

y = CR +Du

may be considered a partial definition of the state variables which specifies the
relationship

b Mrni a rn-i i1ma
CR~~ a u a Y +  D

m am

But one such equation is not enough to define the constant D and the m state variables
which do not appear in equation set A. An additional m equations are required which
must not only insure the independence of the state variables but must be consistent
with set A in order to represent the systems. That is, R and D may be defined by any
set of m+ equations that are linearly independent and related to each of the variables
of set A by some linear combination.

This principle allows many possible formulations of the additional definition
equations. Highly arbitrary choices may be involved in the selection of any particular
form. Simplicity then becomes the guiding principle in such choices.
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if we retain the form of

y = CR +Du

for the additional m equations we have

f, =A x + Blu
I.

f =AR + B u
2 2 2

f =A R+B u

I m m m

or in matrix form.

F =AR+Bu

The independence of the state variables may be assured by requiring

det A / 0

This follows from the property of determinants which allows any constant miltiple of
one row to be added to another without changing the value of the determinant. If any
state variable is dependent, it may be expressed as some linear combination of other
state variables. It then would be possible to manipulate the rows of A in this manner
until either one row or one column is all zeroes. Again by the properties of deter-
minants, det A = 0 under these conditions.

To insure the definition equations are consistent with set A, we require each
variable of set A be expressible as a linear combination of the variables requiring
definition (i. e., xi and D). If T represents the variables of set A, W the variables of
the definition set, and Q the matrix relating the two.

j;V =Q V

Furthermore, if PV represents equation set A, each equation of set A may be directly
equated with a linear combination of x i and D.

m=

po = PQTv = R7v
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A very straightforward way of insuring consistency is to impose a direct corre-
spondence between the equations of set A, and the lines of

y = CR + Du } definition set.
F=AR+Bu

tIn equation set A, each line is obtained by incrementing the equation order and
dropping out terms higher than mth order. The same must be true of the definition set.

Equation Set B
1 Du

-Y +Cx +Du =-f +AI 3+Bu

fl + A 'RI + B ul =_f2 + A 2 R + B u

-f + A 3? +B -A + +B u
m-1 m 1 2 2

Noting the similarity between the terms on the night above, and the original definition
set, we can make a judicious choice for fi.

1 1
f1 = y -Du

11 2 -2 -1 -

f =f -B u =y BDu Blul

2 1 1 1 1 1
1m fo 1= m rn rnlU - Bn1

which simplifies the form of equation set B to

C
A , = A +Bu

A M1

B-5
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Further choosing

[A1 =1I= [ 1 0]

m-1

Simplifies the form for the definition set

y =CR+Du

1 -

R =Ax +Bu.

If this system represents a continuous system (differential equation), we have the
familiar forms:

y(t) = Cx(t) +Du(t)

A (t) = A R (t) + B u(t)

If the system is discretized (difference equation) we have

y (t-mT s)= C R (t-mT s) +D u (t-mTS)

Rx(t- (m-i) Ts) = AR (t-mT s) +B u (t-mTS)

Shifting t = 0 forward by m sampling intervals yields the more customary forms.

y (t) = C R (t) + D u (t)

x(t +T) A Ax (t) + Bu (t)

Knowing these forms the definition equations may be rewritten,

x=y-Du

1 1 1
x BU = y - Du - B1u

1 M-1 D -1 m-2-
m-1 i-1 1BM-1
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The mth row of A and the constant D, remain to be determined. Using the above

-u expressions,

m =A +B u
m mI I

expands to

A Cy -Du) +A 1V 1u B,

rn-i rn-i m-2 m m
+ +A (y -N -B1u ... -B M1u)-y +Du =

mm 1r-

rn-i 1
+ Bu +... +B u +Bmu

1 rn-i

Associating like order terms.

A my-(A mlD+A m2B 1+. + A m.B -- B In)u

+A Iny - (A m2 DAm3 B1 + +Amm Bm-2 -BM1)

=0

+ A MY M1 (A nD -B 1) mi1

- y m+Du I

Which is very similar to equation 1 and may be set equal by allowing

D bt Am =(a -aa

bIn= (ArMI D+Am2 B 1 +...+A mmB MI -Brm

bi = (A mD-B1
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We now have arrived at the most common state space formulation. *

D b b 0  C = (1, 0, .. 0)

0 1 0... 0 B
0 0 1 .... 0 B 2A= B= .

0 0 0 .... 1
-a - ......- a Bm -- m

where. and,

=b - alb0  x I = y -b0u

B=b -ab -a B bJ B
2 2 2 0 1 1 2 y 0 1

m-i m-1 m-2B = bm - aBnb0 - am-1 Bm-1 Xm =y -b0u -B1u .... -Bm-u

AN ALTERNATE STATE SPACE FORM

Although in common use this form falls short of the goal of achieving maximum
simplicity. To see why substitute x1 = y - b0 u into equation 1 to obtain

ax + + (a m-10 rnb-i)

Sx1 +(ab - bi)U+a x + (a b -b )u
ml m -In M11 m-1 0m 1

+ .. +a l x 1  + (a b 0 -b 1 )u +x 1  J

We have defined a series of functions fi so that the effects of the orders of all
state variables in this equation are separated from the effects of the orders of u.

-Ai + Bu

in doing so the coefficients of the orders of x, above appear directly as entries of A.
It is therefore reasonable to believe that if those definitions were chosen slightly

*See ref. 3.
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differently, the form of B could also be simplified to express directly the coefficients
of the orders of u above. That is.

B. = (aib - b)
1 jO 0

We may maintain the correspondence of the rows of the definition set with the
equations of set A, while obtaining the desired form for B by collecting all higher
order terms together as a single first order state variable.

1

ax +(a rb - b i) u+x k 0

where 111 m

Xk a 1 x +(a b-b )u +_ +x
0 m 1  rnm-1 M-1 1

decrementing the superscripts

1 b-b 1m-1

xk = am x + (a m b -b m-1) U+ , ru2X1 + m  2  0 m - 2  
1

, k - 1

We now may continue defining the state variables in this manner until finally we get

1 •

xk - (m-2) = a1 x 1 
+ (a 1b0 - b 1) u + x 1

We now have a system of m + 1 equations each of which was obtained by decrement-
ing the superscripts of the previous one. Therefore, to maintain the ordered corre-
spondence with the lines of set A which were obtained by incrementing the superscripts,
we must reverse the order of these equations setting k = m so that

x 1 - xa1 + x2 + (b1 - a1 b0 ) u

x =- a2 x + x 3 
+ (b2 -a 2 b0 )u

*

1
x M-1 =-am_i X +x +(b - u-m binrn-anl

x = -a x1 +(bm -amb 0 ) u
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Since the latest form of equation 1 on page B-8, is predicated on

y =-x1+b u1. 0

The values of C = (1, 0... 0), D = b0 are unchanged while the A matrix is altered
slightly and the B vector is simplified.

-a I  1 0 ... 0 b - ab 0

-a 0 1 0 b -ab
*2=B 2 20

a 0 0 .a 0 b abm "m"mO

The substitutions of page B-1 may be made for discrete systems.

MULTIPLE INPUT AND OUTPUT SYSTEMS

Until now, applications of state space notation only to single input, single output
systems have been considered. The concept can now be extended to a network of linear
elements. First consider a system of V uncoupled linear elements each having its own
set of state space equations of the form,

Sx* + b 0 i u.

S= Ax +B. u.

Combining all 2 such sets into a single pair of matrix equations gives

= + b 0-

X1 *

X A X+Bu
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where the dimensions of the equations have been expanded so that

Yiu1 x11y Y2 u2  x12

b0

: -

0 *b
022

Y2 4 - 2l

0 b0

1 0...• 0bo1 0 .

X- x12" . . . B . a B

X = x21 x 22 2ex B B B21 B 22 B 2V

In m

X ml x m2 X • me B MI Bin2"'.B mv

m order of highest order element.

i The columns of X are the state vectors of the k elements and the columns of B
are the corresponding input vectors, The matrix A* always has a constant form,
depending on the expressions chosen for the B matrix entries, of either

--.al 1 0 . 0" 0 1 00 -

-a 20 . .. 00 0 1 0
SA 21 or

-a Mi 0.0-a mi -allt
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The multiplication A*X is carried out in the usual row by column fashion except
that aji is selected from the ith row of the matrix

a 1  a . .a21 ml

a 12 a22" am2

a a a;Q 2 m

when multiplying any row of A* by the ith column of X.

Consider now the case in which the Q linear elements are coupled by pure gains.The inputs to the elements, a', may be expressed as Q linear combinations of k sys-
tem inputs, i.

SIMPLY COUPLED INPUT AND OUTPUT

ul Ell u I Gl I- +

That is
4 A

E11 E21 ... Ek1

E E EU 12 22 k2
u

< k

B-12
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The output may be similarly coupled giving (for j system outputs, y)t 11  C21  " C2 l

C1 2  C2 2
.. y

y Iy

C1 C2j C Rj

Substituting into the multiple element state space equations

y= T D a

X A X+Bu

where

D=Cb0E
0

B B' E

and B' is the B matirx on pg. B-11.

For more complex types of coupling, block diagram algebra may be used to
reduce the network to this simple form. Some simple examples are:

G

GGb

u2 + Y2
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OR: GilUl Ga Yl U1 G 21 Yl

GbG

u2  + G--, 2

OR:

It is clear that each coupling element, including pure gains, may be thought of as
~creating a separate entry in the transfer matrix.

G G+ G

+1 2 1k Y

G1'11 G 12 ...G
G21 G22 G 2k

j= u

i _ Gj G2• Gk

G Ai j2 Gjk

S<- - k

This means that any network may be reduced so that entries of matrices C and E
are either 0 or 1. In the case of matrix E, only one entry in each row may be nonzero.
Furthermore, which entries are nonzero may be keyed to the subscripts of the trans-
fer function; i. e. its location in the transfer matrix.

IfGQ = Gk, E = 1 otherwise E = 0
jk' kQ iq

Cvj = I c qi = 0

All that is required to specify a highly general system by the method presented
here is to specify the number of elements, their location in the transfer matrix, and
the gains, poles, and zeroes of each element. The state spare matrices A%, P, C and
D may be calculated directly.

B-14



AD-AI04 901 NAVAL AIR DEVELOPM4ENT CENTER WARMINSTER PA AIRCRAFT -ETC F/G 20/4
MATH MODEL FOR NADC SPIN SIMULATOR AND F-14 HIGH ANGLE OF ATTAC--CTCfU)
OCT GO ~J M STIFEL

UNCLASSIFIED NADC8022G6OVOL-1



DISTRIBUTION LIST

REPORT NO. NADC-80220-60

VOL I

AIRTASK NO. A0595941/0012/0241/000003

WORK UNIT NO. 1F0960GA

Copies

NAVAIR (AIR-950 D) ................................ 6

(2 for retention)

(2 for AIR-320D)

(2 for AIR-5301)

NASA Langley Research Center ......................... 2

Langley Virginia (Attn: W. E. Gilbert)

NASA Dryden Flight Research Center ........................ 2

Edwards AFB, Calif. (Attn: J. Gera, E-EDC)

1 Assistant Secretary of the Navy Research & Development ......... 2
4Washington, DC 20350

(Attn: L. V. Schmidt)

DTIC ........................................... 12



RLL~


